631 research outputs found

    On D-branes in the Nappi-Witten and GMM gauged WZW models

    Full text link
    We construct D-branes in the Nappi-Witten (NW) and Guadagnini-Martellini-Mintchev (GMM) gauged WZW models. For the SL(2,R)×SU(2)/U(1)×U(1)SL(2,R)\times SU(2)/U(1)\times U(1) NW and SU(2)×SU(2)/U(1)SU(2)\times SU(2)/U(1) GMM models we present the explicit equations describing the D-brane hypersurfaces in their target spaces. In the latter case we show that the D-branes are classified according to the Cardy theorem. We also present the semiclassical mass computation and find its agreement with the CFT predictions.Comment: 16 pages, harvma

    Tyre profiling : development and evolution of forensic methodology

    Full text link
    University of Technology, Sydney. Faculty of Science.The chemical analysis of tyres is not a routine part of forensic investigation. The use of tyres as evidence has been limited to comparison of the tread pattern. However, the tread pattern is not the only evidence that may be left behind by a tyre. When a tyre skids across a hard road surface such as bitumen or concrete, residue from the tyre may be left behind. It was the aim of this research to develop a method for the analysis of tyres and their residues, understand the amount of chemical variation in tyres, identify suitable methods for the collection of tyre residues from different road surfaces, and to classify tyre samples and identify the source of tyre residues. A suitable method for analysis was successfully developed using pyrolysis-gas chromatography/mass spectrometry. It was found that pyrolysis was best completed at 450 °C using a furnace type pyrolyser. Chemical variation was investigated in a single tyre, in tyres over time, in production batches, and between different models and sizes of tyres from the same manufacturer. Small variations were found within a single tyre and in tyres over time. Greater variation was observed in both the same and different production batches, and between different model tyres and different size tyres. Three different collection techniques were investigated - picking, adhesive tape, and swabbing. Picking was found to be the most suitable technique to use on a concrete road with gravel aggregate, while a fingerprint lift was found to be the most suitable technique on a bitumen road surface. Swabbing was found to be an unsuitable technique. Six replicate analyses were used to catalogue changes in the chemical composition between the tyre and the residue. Numerous changes were observed such that only a limited number of signals from the chromatogram could be used for identification purposes. Three different techniques were used for classification and identification - relative polymer content (RPC), target compound identification (TCI), and linear discriminant analysis (LDA). LDA was found to be the most successful technique, correctly classifying 31 of 36 tyre residues. PyGCMS allows for simple analysis of tyre samples and residues without pre-treatment. A tyre sample was found to have 5-10% variation in the relative polymer content, regardless of when during the life of the tyre the sample was taken. Variation was found between tyres from the same manufacturer. Both similarities and differences were found between tyres from the same production batch and different production batches, suggesting that homogeneity in a single production batch not guaranteed and that manufacturers will also change the composition of a tyre between different production batches. The collection of tyre residues (like the collection of any forensic evidence) may or may not be successful depending specifically on the type of road surface. Collection of tyre residues from a concrete road with gravel aggregate was successfully achieved through picking. Collection of tyre residues from a bitumen road was successfully achieved; however adhesive contamination from both the fingerprint lift and clear adhesive tape interfered with the PyGCMS analysis. Tyre residues were successfully correlated to the source tyre, but the process of collecting sample information from numerous replicate analyses of both the tyre sample and residue for data analysis was a time-consuming one

    Peculiar Spin Frequency and Radio Profile Evolution of PSR J1119−-6127 Following Magnetar-like X-ray Bursts

    Get PDF
    We present the spin frequency and profile evolution of the radio pulsar J1119−-6127 following magnetar-like X-ray bursts from the system in 2016 July. Using data from the Parkes radio telescope, we observe a smooth and fast spin-down process subsequent to the X-ray bursts resulting in a net change in the pulsar rotational frequency of Δν≈−4×10−4\Delta\nu\approx-4\times10^{-4}\,Hz. During the transition, a net spin-down rate increase of Δν˙≈−1×10−10\Delta\dot\nu\approx-1\times10^{-10}\,Hz\,s−1^{-1} is observed, followed by a return of ν˙\dot{\nu} to its original value. In addition, the radio pulsations disappeared after the X-ray bursts and reappeared about two weeks later with the flux density at 1.4\,GHz increased by a factor of five. The flux density then decreased and undershot the normal flux density followed by a slow recovery back to normal. The pulsar's integrated profile underwent dramatic and short-term changes in total intensity, polarization and position angle. Despite the complex evolution, we observe correlations between the spin-down rate, pulse profile shape and radio flux density. Strong single pulses have been detected after the X-ray bursts with their energy distributions evolving with time. The peculiar but smooth spin frequency evolution of PSR~J1119−-6127 accompanied by systematic pulse profile and flux density changes are most likely to be a result of either reconfiguration of the surface magnetic fields or particle winds triggered by the X-ray bursts. The recovery of spin-down rate and pulse profile to normal provides us the best case to study the connection between high magnetic-field pulsars and magnetars.Comment: Accepted for publication in MNRAS on 2018 July 2

    DBI analysis of generalised permutation branes

    Get PDF
    We investigate D-branes on the product GxG of two group manifolds described as Wess-Zumino-Novikov-Witten models. When the levels of the two groups coincide, it is well known that there exist permutation D-branes which are twisted by the automorphism exchanging the two factors. When the levels are different, the D-brane charge group demands that there should be generalisations of these permutation D-branes, and a geometric construction for them was proposed in hep-th/0509153. We give further evidence for this proposal by showing that the generalised permutation D-branes satisfy the Dirac-Born-Infeld equations of motion for arbitrary compact, simply connected and simple Lie groups G.Comment: 19 pages, computation in section 3.5.1 corrected, conclusions unchange

    A Shapiro delay detection in the binary system hosting the millisecond pulsar PSR J1910-5959A

    Full text link
    PSR J1910-5959A is a binary pulsar with a helium white dwarf companion located about 6 arcmin from the center of the globular cluster NGC6752. Based on 12 years of observations at the Parkes radio telescope, the relativistic Shapiro delay has been detected in this system. We obtain a companion mass Mc = 0.180+/-0.018Msun (1sigma) implying that the pulsar mass lies in the range 1.1Msun <= Mp <= 1.5Msun. We compare our results with previous optical determinations of the companion mass, and examine prospects for using this new measurement for calibrating the mass-radius relation for helium white dwarfs and for investigating their evolution in a pulsar binary system. Finally we examine the set of binary systems hosting a millisecond pulsar and a low mass helium white dwarf for which the mass of both stars has been measured. We confirm that the correlation between the companion mass and the orbital period predicted by Tauris & Savonije reproduces the observed values but find that the predicted Mp - Pb correlation over-estimates the neutron star mass by about 0.5Msun in the orbital period range covered by the observations. Moreover, a few systems do not obey the observed Mp - Pb correlation. We discuss these results in the framework of the mechanisms that inhibit the accretion of matter by a neutron star during its evolution in a low-mass X-ray binary.Comment: 4 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core

    Get PDF
    Using pulse timing observations we have obtained precise parameters, including positions with about 20 mas accuracy, of five millisecond pulsars in NGC 6752. Three of them, located relatively close to the cluster center, have line-of-sight accelerations larger than the maximum value predicted by the central mass density derived from optical observation, providing dynamical evidence for a central mass-to-light ratio >~ 10, much higher than for any other globular cluster. It is likely that the other two millisecond pulsars have been ejected out of the core to their present locations at 1.4 and 3.3 half-mass radii, respectively, suggesting unusual non-thermal dynamics in the cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl

    Long-term observations of the pulsars in 47 Tucanae - II. Proper motions, accelerations and jerks

    Get PDF
    This paper is the second in a series where we report the results of the long-term timing of the millisecond pulsars (MSPs) in 47 Tucanae with the Parkes 64-m radio telescope. We obtain improved timing parameters that provide additional information for studies of the cluster dynamics: a) the pulsar proper motions yield an estimate of the proper motion of the cluster as a whole (μα = 5.00 ± 0.14 mas yr−1\mu_{\alpha}\, = \, 5.00\, \pm \, 0.14\, \rm mas \, yr^{-1}, μδ = −2.84 ± 0.12 mas yr−1\mu_{\delta}\, = \, -2.84\, \pm \, 0.12\, \rm mas \, yr^{-1}) and the motion of the pulsars relative to each other. b) We measure the second spin-period derivatives caused by the change of the pulsar line-of-sight accelerations; 47 Tuc H, U and possibly J are being affected by nearby objects. c) For ten binary systems we now measure changes in the orbital period caused by their acceleration in the gravitational field of the cluster. From all these measurements, we derive a cluster distance no smaller than ∼ \sim\,4.69 kpc and show that the characteristics of these MSPs are very similar to their counterparts in the Galactic disk. We find no evidence in favour of an intermediate mass black hole at the centre of the cluster. Finally, we describe the orbital behaviour of the four "black widow" systems. Two of them, 47 Tuc J and O, exhibit orbital variability similar to that observed in other such systems, while for 47 Tuc I and R the orbits seem to be remarkably stable. It appears, therefore, that not all "black widows" have unpredictable orbital behaviour.Comment: 21 pages in journal format, 9 figures, 4 tables, accepted for publication in MNRAS, several clarifications made and typos fixe
    • …
    corecore